skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halley, Matthew R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Not AvailableThis study investigates the evolution of locomotory morphology and migratory behavior in nightingale-thrushes (genus Catharus), a clade of songbirds with diverse migratory strategies. With large datasets of molecular and morphometric characters, we resolve phylogenetic relationships, identify and model migration-related morphological characters, and estimate ancestral states of those characters to infer evolutionary transitions in the migratory phenotype. While acknowledging that unknown factors (e.g., differential extinction) may confound interpretation, our results suggest that (1) migratory behavior and its functional morphology are fundamentally linked; (2) short-distance or elevational migration (not long-distance) was the ancestral state of Catharus; (3) short-distance migration was the evolutionary precursor of long-distance migration; and (4) the short-distance migrant, Hermit Thrush (C. guttatus), may be in relative phenotypic (ecological) stasis. This potentially explains the ecological incumbency of C. guttatus in temperate North America during winter, and offers a new framework for interpreting the evolutionary sequence that produced long-distance migration in this model system. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026